A Scale Invariant Clustering using Minimum Volume Ellipsoids
نویسندگان
چکیده
This paper develops theory and algorithms concerning a new metric for clustering data. The metric minimizes the total volume of clusters, where volume of a cluster is defined as the volume of the minimum volume ellipsoid (MVE) enclosing all data points in the cluster. This metric has the scale-invariant property, that is, the optimal clusters are invariant under an affine transformation of the data space. We introduce the concept of outliers in the new metric and show that the proposed method of treating outliers asymptotically recovers the data distribution when the data comes from a single multivariate Gaussian distribution. Two heuristic algorithm are presented that attempt to optimize the new metric. On a series of empirical studies on real and simulated data sets, we show that volume-based clustering outperforms the k-means algorithm.
منابع مشابه
Scale-invariant clustering with minimum volume ellipsoids
This paper develops theory and algorithms concerning a new metric for clustering data. The metric minimizes the total volume of clusters, where the volume of a cluster is defined as the volume of the minimum volume ellipsoid (MVE) enclosing all data points in the cluster. This metric is scale-invariant, that is, the optimal clusters are invariant under an affine transformation of the data space...
متن کاملDetection of Copy-Move Forgery in Digital Images Using Scale Invariant Feature Transform Algorithm and the Spearman Relationship
Increased popularity of digital media and image editing software has led to the spread of multimedia content forgery for various purposes. Undoubtedly, law and forensic medicine experts require trustworthy and non-forged images to enforce rights. Copy-move forgery is the most common type of manipulation of digital images. Copy-move forgery is used to hide an area of the image or to repeat a por...
متن کاملOn the Minimum Volume Covering Ellipsoid of Ellipsoids
We study the problem of computing a (1+ )-approximation to the minimum volume covering ellipsoid of a given set S of the convex hull of m full-dimensional ellipsoids in Rn. We extend the first-order algorithm of Kumar and Yıldırım that computes an approximation to the minimum volume covering ellipsoid of a finite set of points in Rn, which, in turn, is a modification of Khachiyan’s algorithm. F...
متن کاملApproximate Minimum Volume Enclosing Ellipsoids Using Core Sets
We study the problem of computing the minimum volume enclosing ellipsoid containing a given point set S = {p1, p2, . . . , pn} ⊆ R. Using “core sets” and a column generation approach, we develop a (1 + )-approximation algorithm. We prove the existence of a core set X ⊆ S of size at most |X| = α = O ( d ( log d + 1 )) . We describe an algorithm that computes the set X and a (1 + )-approximation ...
متن کاملMinimum Volume Enclosing Ellipsoids
Two different methods for computing the covering ellipses of a set of points are presented. The first method finds the optimal ellipsoids with the minimum volume. The second method uses the first and second moments of the data points to compute the parameters of an ellipsoid that covers most of the points. A MATLAB software is written to verify the results.
متن کامل